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ABSTRACT

Over the past few years, Space Situational Awareness (SSA), generally concerned with acquiring and maintaining
knowledge of resident Space Objects (SO) orbiting Earth and potentially the overall cis-lunar space, has become of
critical to preventing the loss, disruption, and/or degradation of space capabilities and services. Importantly, threats to
operational satellites are also increasing, due to emerging capabilities of potential adversaries. As space becomes more
congested and contested, developing a detailed understanding of the SO population became one of the fundamental
SSA goals. Currently, the SO catalog includes simplified SO characteristics, e.g. solar radiation pressure and/or drag
ballistic coefficients. The currently available simplified description limits the dynamic propagation model used for
predicting the catalog to those that assume cannon ball shapes and generic surface properties. Future SO catalogs will
have more stringent requirements and shall provide a detailed picture of SO characteristics. An analysis of the current
state of the art shows that traditional measurement sources for SO tracking, such as radar and optical, can be employed
to extract information on SO characteristics. Such measurements have been shown to be sensitive to SO properties
such as shape, attitude, angular velocity, as well as surface parameters.

Recent advancements in deep learning (e.g. Convolutional Neural Networks (CNN), Recurrent Neural networks
(RNN)), Generative Adversarial Networks (GAN), Deep Autoencoders (AE)) have demonstrated impressive results
in many practical and theoretical fields (e.g. speech recognition, computer vision, robotics). Whereas deep learning
methods are becoming ubiquitous in many aspects of our life, they have been barely explored for SSA applications
in general and for SO object characterization, in particular. Recently, CNNs have been shown by our research team
to be an effective method for SO classification using photometric data. In this paper, we report the results obtained
in designing and training a set of deep models capable of retrieving SO shapes from light curves. Traditional shape
retrieval methods employ some form of physically-based model inversion. One of the most advanced approach, the
Multiple Models Adaptive Estimator (MMAE), runs a bank of Extended Kalman Filters which are based on a set of
physical models accounting for different space object properties. The model that minimizes the uncertainty during
the retrieval (least residual) is considered to be the model that best represents the SO object properties. Nevertheless,
physically-based model inversion is generally ill-posed and computationally expensive. Here, we show how deep
learning methods can be employed to provide an effective shape retrieval in a fast and accurate fashion. More specif-
ically, CNN are designed trained and validated for SO shape retrieval. Additionally, we design and train Variational
Autoencoders (VAE) to learn the latent distribution of the data. VAE capture the structure of the data and enable an
understanding of the complexity of the light curve inversion problem. Indeed, plotting the learned mean and variance
and the data distribution enables visual understanding of the ability of the deep network to learn the correct inverse
functional relationship between light curves and SO shape.

1. INTRODUCTION

Over the past few years, Space Situational Awareness (SSA) is becoming an area of utmost interest. The latter is due to
a dramatic increment of the resident Space Objects (SO) as well as the continuously increasing amount of international
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space actors, including state and private companies. Consequently, SSA has become an important research topic
especially when dealing with the problem of SO identification, characterization and behavior understanding. Enabled
by the most recent advancement in sensor technology, researches and operational engineers rely on a large amount
of tracking data that can be processed to identify, characterize and understand intention of space objects. The SO
catalog maintained by JSpoC currently includes upward of 29,000 SO, with 1,100 of such objects being actively
controlled and operated. Researchers working on SSA are interested in providing a detailed understanding of the SO
population behavior which must go beyond the currently SO catalog comprising simplified SO characteristics such
as solar radiation pressure and drag coefficients. To provide a more realistic and reliable understanding of the SO
dynamics, future catalogs that support effective SSA, must include detailed SO characteristics (e.g. shape and state
of motion). The latter can be employed in dynamical propagation models to accurately predict SO trajectory and
behavior.

Optical sensors are generally employed to track near-geosynchronous SO. Such sensors provide both astrometric and
photometric measurements. Consequently, SO properties can be estracted from astrometry pipelines (e.g. trajectories)
and photometric data (e.g. shape and state of motion). More specifically, light curves, i.e. flux of photons across a
wavelength reflected by the SO and collected by optical sensors, play an important role in determining the SO attitude
and state of motion. Indeed, attitude estimation and extraction of other characteristic using light curve data has been
demonstrated in Ref. [1, 2, 3, 4, 5].

Traditional measurement sources for SO tracking (e.g. radar and/or optical measurements)have been shown to be
sensitive to shape [4, 6], attitude [4], angular velocity [7], and surface parameters [8, 9]. A literature review shows
that recent advancement have been made to estimate SO properties. Such techniques heavily rely on estimation theory
and include the development of multiple model [4, 10], nonlinear state estimation [11, 12, 7], and full Bayesian
inversion [13] approaches for SO characterization. Although grounded in a solid theoretical background, the above
mentioned methods tend to be computationally expensive. New techniques are sought that can provide a higher
degree of accuracy, computational efficiency and reliability. Recent advancements in machine learning have included
deep learning as critical breakthrough technology. Indeed, deep learning methods [14] have shown ground breaking
results across a large number of domains. Deep networks are neural networks that comprises more than hidden layers
of neurons in their architecture. In such multi-layer neuronal arrangement, deep learning approaches are designed to
mimic the function of the brain by learning nonlinear hierarchical features from data that build in abstraction [15]. The
latter enabled a higher level of accuracy in typical classification tasks. One of the most popular deep architectures are
the so-called Convolutional Neural Networks (CNN). The latter have been used to classify an image or determining the
particular content of an image by transforming the original image, through a set of layers with specialized architecture,
to a class scores. CNNs have achieved remarkable performance on image processing tasks. Examples include 1)
object classification [16], 2) scene classification [17], and 3) video classification [18]. Importantly, the key enabling
factor for the success of CNN is the development of techniques that can optimize large scale networks, comprising
tens of millions of parameters, as well as massive labeled datasets. More recently, researchers have been exploring
the use of deep architecture to find patterns in the data (unsupervised methods). Recently, a class of deep neural
networks generally named Auto Encoders (AE) [19] have been devised to find structures on the data. More specifically,
deep AE efficiently learn a data representation, usually for dimensionality reduction, by training a deep network in a
layerwise fashion to reconstruct the original data. Among the many variations of the AE, a relatively new generation
of algorithms called Variational Autoencoders (VAE) [20] have emerged as generative models. Although devised with
a AE-like architecture, they have a completely different mathematical formulation: VAEs are directed probabilistic
graphical models that learn the posterior distribution of the data using a neural networks. Thus, VAEs are capable of
learning the data distribution in the training set and then potentially be employed to generate new data. Applications
typically employ data dimensionality reduction, where mean and variance of the distribution are plotted to visualize
how data tend to cluster.

In this paper, we explore and evaluate the ability of deep learning algorithms to invert physically-based light curve
models and retrieve SOs shape whenever trained on model-generated data. More specifically, we investigate Convo-
Iutional Neural Networks (with max-pooling and dropout) [15] as a mean to solve the light curve inverse problem and
evaluate the ability to learn the inverse relationship between data and shape. Additionally, pattern data analysis and di-
mensionality reduction approach are investigated to understand the ability of such algorithms to perform model-based
inversion. More specifically, VAEs are trained on light curve data generated by physically-based models to learn the la-
tent distribution over the classes of data. Visualizing the per-class (shape) mean and variance data distribution provides
potential tools for understanding how the inverse relationship modeled via CNNs are effective in SO shapes retrieval.
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Indeed, VAEs enable a cluster inspection/analysis of high-dimensional data. The latter highlights the complexity of
the inverse functional relationship between light curves and SO shape (classes). Such complexity is confirmed by
non-linear dimensionality reduction techniques, such at the t-Distributed Stochastic Neighbor Embedding (or t-SNE
[21]), which projects high-dimensional data in a 2D embedding while preserving the distance between data.

2. INVERSION OF PHYSICALLY-BASED MODELS: DEEP LEARNING MODELS

Shape retrieval from measured light curves is a critical in understanding the nature of SOs. Over the past few years,
a modeling approach [22] has emerged where SO light curves can be simulated as function of the object parameters
(e.g. shape, size, surface reflectance properties, state of motion). Such forward models are specifically devised to
describe the functional relationship between SO characteristics and its corresponding light curves. Such models can be
classified as physically-based models, because light curves are computed using basic physical principles that integrate
state of motion with surface physical properties (e.g. reflectance, absorption). Such models can be potentially inverted,
i.e. given the measurements, retrieve the SO properties. More specifically, light curve inversion consists in iteratively
adjusting the values of the SO input parameters to the forward model F M until the simulated light curve matches the
measured light curves L. Formally:

L=FM(SO0q)+¢ (1)

Where SOy represents the SO properties (e.g. shape) and € accounts for both measurements and model uncertainties,
i.e. it represents the adequacy between model and measurements. Generally, inverse problems can be properly solved
if they are well-posed. Following Hadamard definition, a problem is well posed if and only if the solution 1) exists, 2)
it is unique and 3) depends continuously on the data. However, inverse problems are known to be ill-posed by nature
mainly for two reasons [23]. First and foremost, the solution of the inverse problem might not be unique as a set of SO
configurations could potentially lead to similar matches between the modeled and measured light curves. Secondly,
measurements and model uncertainties may yield large variations in the solution of the inverse problem. Generally,
regularization techniques are required to obtain stable as well as reliable solutions of the inverse problems. Here, we
consider a data-driven approach where the inversion of physically-based light curve models is obtained by designing
deep networks that can learn the inverse relationship between simulated light curves and SO shape. We tackle a
challenging problem where we train a CNN to discriminate between rocket bodies with similar shape. Importantly,
we show that VAE can be employed to learn the distribution of the simulated datasets, which provides an evaluation
of the nature of the inversion.

2.1 Convolutional Neural Networks

Over the past few years, there has been an explosion of machine learning algorithms. Such algorithms can learn from
data to accomplish specific tasks (e.g. image recognition, object identification, natural language process, etc.). Among
the various available techniques, deep learning, comprising methods and techniques to design and train multi-layer
neural networks, has been playing a dominant role. In contrast to shallow networks, deep networks refers to a class of
neural networks comprising a number of hidden layers greater than one. Among all possible systems, one of the most
powerful deep architectures is called Convolutional Neural Networks (CNN). Generally, the architecture of a CNN is
designed to take advantage of the 2D or 3D [width, height,depth] structure of an input image which is processed as
pixels values. The basic CNN structure uses many types of layers which are 1) Convolutional Layer, 2) Pooling Layer,
3) Fully Connected Layer and 4) Output Layer. The core layer, i.e. the Convolutional layer, extract features from the
input volume by applying filters on the image. It is the most demanding layer in terms of computations of a CNN and
the layer’s parameters consist of a set of learnable filters. Each filter is basically a matrix spatially smaller than the
image which is scanned along width and height (2D case). Importantly, filters (or kernels) are the weights of this layer.
In fact, as the filter is sliding on the input image, it multiplies its values with the original pixel values of the image
and these multiplications are all summed up giving only one number as output. Repeating this procedure for all the
regions on which filter is applied, the input volume is reduced and transformed and then passed to the Max-pooling
layers. Matematically, the convolutional layer can be described as follows:

N M
(X *Y) (i,j) = Z Z Xm,n *‘/Vifm,jfn 2)
n=0m=0
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Here, W is the convolution kernel corresponding to the randomly initialized weights, and X is the image with indices
(m,n). CNN typically employs the nonlinear activation function called ReLU function (i.e., Rectified Linear Unit)
described as f(x) = max(0,x). Spatial pooling layers group local features from spatially adjacent pixels to improve
robustness. A set of convolutional layers are generally stacked below a fully connected layer that feeds a soft-max
layer ([24]), which outputs the probability of the image belonging to one of the classes. CNN are easier to train due
to inherent parameter sharing in the convolutional layer. For a classification task, the cross-entropy function [24] is
generally employed as cost to minimize.CNNs are trained in batch mode via Stochastic Gradient Descent (SDG) with
variable size of mini-batches. The dropout technique improves generalization and avoids overfitting.

2.2 Variational Autoencoders for Unsupervised Learning

Variational AutoEncoders (VAE) [20] are a more recent version of the classical autoencoders (AE). The latter are
neural networks constructed by stacking layers of neurons that can perform data reconstruction using an encoder-
decoder approach. VAE performs both encoding and decoding functions by imposing additional constraints on the
encoded representation. At the very basic level, such constraints make the VAE an algorithm capable of learning
the latent variable model behind the input data. Traditional AE generally learn an arbitrary function to represent the
encode-decode operation. Conversely, VAE learn the parameters that describe the probability distribution that models
the data (encoding function). Once such distribution is learned from the data, one can sample the parameters space
such that the encoding portion of the VAE can generate samples closely resembling the training sets (i.e. works as
a generative model). VAEs generally rely on the assumption that one can potentially sample the input data from a
Gaussian distribution of latent parameters, or in other words, it assumes that the data are normally distributed. The
generative model is assumed to be a deep latent Gaussian model. More specifically, let x be a local (observed) variable
and let z be the corresponding latent variable, with joint distribution described as follows:

Po(x,2) = po(x[2)p(2) 3)

In typical setting for Bayesian modelling, one assumes that the VAE has a single layer of latent variables with normal
prior distribution in z. As an example, one can represent the decoder network as multivariate Bernoulli distribution
with a network represented as follows:

po(x|z) = Bern(c(Wa x h(Wiz+by) +b2)) 4)

Where o and / are the sigmoid fucntion and some non-linear function. respectively and 8 = W, W,,b,b, are the
networks learnable parameters. Once the generative process is specified, latent variables z and model parameters 0
must be inferred. Due to analytical intractability of the inference process, a typical optimization process known as
Variational Inference is generally employed. The process seeks to approximate the posterior of the latent variable
z given the data, i.e. gg(z|x) that minimize the Kullback-Leibler (KL) divergence between true and approximate
posteriors:

0" = argmingKL[g¢ (z|x)||pe(z|x)] )

Although a sound optimization problem, due to numerical stability and better tractability, one generally prefers to
maximize an alternative objective function named Evidence Lower Bound (ELBO), expressed as:

ELBO(q) = Eqy o|x) [log(po (x]2)] — KL[g4 (z]x)[|p(2)] (6)

Importantly, ¢4 (z|x) can be seen as a probabilistic encoder, i.e. given an observation x, it encodes it into a distribution
over an hidden lower-dimensional representation. At this stage, one can perform training via gradient-base optimiza-
tion of ELBO with respect to the model parameters 6 and the variational parameters ¢. The latter require knwoledge
of the gradient which is generally hard to find analytically. Monte Carlo-based estimation methods are the dominant
methods for implementation in actual codes. The idea is to write the gradient of the objective function ELBO as an
expectation of the gradient and approximate it via Monte Carlo sampling. Once the gradient estimate is available one
can perform standard stochastic gradient descent.

Copyright © 2019 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



2.3 Statistical Algorithms for Clustering: t-SNE

The t-Distributed Stochastic Neighbor Embedding [21] is a probabilistic technique particularly suitable for visualiza-
tion of high-dimensional data. The overall algorithm is designed to minimize the divergence between two distributions,
i.e. between a) a distribution that measures the similarities between two input points pairwise, and b) a distribution
that measures similarities of the corresponding points in the embedding as mapped pairwise on the low-dimensional
subspace. The overall idea is to embed points living in a high-dimensional space into a low-dimensional space (gener-
ally 2-D or 3-D) in such a way that the mapping preserves similarities (distance) between points. Consequently, points
that are nearby in the high-dimensional space are expected to be close in the low-dimensional embedding. As such,
one can visualize points in low-dimensional spaces to find natural clustering that occur in the high-dimensional spaces.
The input data to the algorithm is the matrix X = {xq,Xz,...,XN} € RPN which contains N vectors x; € RP. After
some preprocessing (e.g. subtraction of the mean and division by the standard deviation) the algorithm computes the
distance d(x;,x;) between each pair of points comprising the matrix X. The distance is then used to compute the Per-
plexity. The latter is generally defined in terms of a model Gaussian distribution. Indeed, one defines the conditional
probability of k given j as follows:

exp(—d(x;)*/(207)

J
Pl = 5 P dt P27 2
and
p(jlj) =0 ®)
Define now the joint probability p j; as follows:
pij = P(j\k)zjvp(k‘/) )
and the Shannon Entropy of P; as follows:
H(Pj) = =) p(k|j)log, (p(k| /) (10)
k

Where the term P; represents the conditional probability distribution over all data points x;. The Perplexity Perp(P;),
which measures the number of neighbors of point j, is defined as follows:

Perp(P;) = 2H®) (11)

Generally, the embedding of points contained in the matrix X into a low-dimensional space, the tSNE algorithm
executes an opimization procedure,i.e. it attempts to minimize the Kullback-Leibler (KL) divergence between the
model Gaussian distribution of the points in X and a student ¢ distribution of point Z in the selected low-dimensional
space. Given the points Z = {z;,z2,...,zy } in the selected low-dimensional embedding, the probability model of the
distribution of the distances between two points can be described as follows:

. (Il —z*) "1
qjk ZmZn#m l“"HZm Zn“ ) (12’)

The KL divergence between th two distributions is therefore:

ik
KL(P|Q) =} pixlog s (13)
J#k

The minimization of the KL divergent is commonly executed by implementing a gradient descent approach.
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3. MODEL INVERSION VIA DEEP LEARNING: MODEL DESCRIPTION AND TRAINING SET
GENERATION

Constructing a deep network capable of learning the inverse relationship between lightcurves and SO shapes, requires
a physically-based forward model. The model describes an arbitrary SO shape as a finite number of flat triangular
plates each equipped with specified reflectance properties. The model is also equipped with dynamical equations of
the SO which describe the trajectory and attitude state while progressing along a specified orbit. The training set is
generated by running the forward model for different shape sonfigurations and variable stae of motion.

3.1 Physically-based Models:Shape Model Definition

The shape model considered in this paper consists of a finite number of flat facets, where each facet has a set of basis
vectors associated with it. These basis vectors are defined in Figure 1 and consist of three unit vectors u?, u2, and u®.
The unit vector uf points in the direction of the outward normal to the facet. For convex surfaces, this model becomes
more accurate as the number of facets is increased. The vectors u? and u? are in the plane of the facet. The SO are
assumed to be rigid bodies and therefore, the unit vectors uZ, u? and u? do not change since they are expressed in the

n
body frame.

The light curve and the SRP models discussed in the next sections require that these vectors be expressed in inertial
coordinates and since the SO body is rotating, these vectors will change with respect to the inertial frame. The body
vectors can be rotated to the inertial frame by the standard attitude mapping given by:

uw =A(q)ug, k=uvn (14)

where A(q?) is the attitude matrix mapping the inertial frame to the body frame using the quaternion parameterization.
Furthermore, the unit vector ul,, points from the SO to the Sun direction and the unit vector u/, _ points from the SO
to the observer. The vector uz is the normalized half vector between u/,, and uébs. This vector is also known as the
Sun-SO-Observer bisector. Each facet has an area <7 (i) associated with it. Once the number of facets has been defined
and their basis vectors are known, the areas <7 (i) define the size and shape of the SO. To determine the SRP forces
and light curve characteristics, the surface properties must be defined for each facet. The shape model used for this
work use triangular facets defined by the location of their vertices b;. Then the area of the i" triangular facet formed
by the convex hull of the control points is given by, <7 (i) = ||d(i) x 1(i)||, where d (i) and 1(i) are the vectors defining

two sides of the facets or d(i) = b; —b;_1, 1({) = b; — b;1;. The unit normal vector is given by
~d(i) x1(i)
1) < 1(@)]|

For this work it is assumed that each facet has the same material parameters (specular coefficients, diffuse coefficients,
and other reflection parameters discussed in the next section).

uy (15)

3.2 Physically-based Models: Lightcurves Generation

There are a number of models used for simulating light curve measurements in literature and Ref. wetterer2013 pro-
vides a good summary of the most popular ones adopted for SO applications. These models differ in the physics
that they represent and their level of complexity, but for SO applications the ability to model specular reflection and
complex shapes while converting energy is desirable. The Ashikhmin-Shirley[25] (AS) model has all the desirable
properties while producing realistic SO light curve. This model is based on the bidirectional reflectance distribution
function (BRDF) which models light distribution scattered from the surface due to the incident light. The BRDF at
any point on the surface is a function of two directions, the direction from which the light source originates and the
direction from which the scattered light leaves the observed surface. The model in Ref. Ashikhmin:00 decomposes
the BRDF into a specular component and a diffuse component. The two terms sum to give the total BRDF:

fr=(dR4+sRy) (16)

which depends on the diffuse bidirectional reflectance (R,;) and the specular bidirectional reflectance (R;) and the
fraction of each to the total (d and s respectively where d +s = 1). Where i denotes the i facet of the SO. Each
facet contributes independently to the brightness and total brightness is the sum over each facet’s contribution. The
diffuse component represents light that is scattered equally in all directions (Lambertian) and the specular component
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Fig. 1: Reflection Geometry

represents light that is concentrated about some direction (mirror-like). Reference Ashikhmin:00 develops a model for
continuous arbitrary surfaces but simplifies for flat surfaces. This simplified model is employed in this work as shape
models are considered to consist of a finite number of flat facets. Therefore the total observed brightness of an object
becomes the sum of the contribution from each facet. In each model, however, c = V' H, p is the diffuse reflectance
(0 < p <1), and Fy is the specular reflectance of the surface at normal incidence (0 < Fy < 1). To be used as a prediction
tool for brightness and radiation pressure calculations, an important aspect of the BRDF is energy conservation. For
energy to be conserved, the integral of the BRDF times cos (6,) over all solid angles in the hemisphere with 6, < 90
needs to be less than unity, with
2m /2

//frcos(G,)sin(Gr)dG,dq):Rd+RS (17
00

For the BRDF given in Eq. (16), this corresponds to constant values of R; = pd and Ry = sFp. The remaining energy
not reflected by the surface is either transmitted or absorbed. In this paper it is assumed the transmitted energy is zero.
The diffuse bidirectional reflectance is then calculated as follows:

_28p N'L\’

(-(-5))

F:%+<i—%>ﬂ—d5 (19)

(18)

where

The vectors L(#;) and V(z;) denote the unit vector from the SO to the Sun and the unit vector from the SO to the
observer, respectively, and together they define the observation geometry (shown in Figure 1). In addition to d, p, and
Foy, the Ashikhmin-Shirley BRDF has two exponential factors (n,, n,) that define the reflectance properties of each
surface. The Ashikhmin-Shirley diffuse and specular reflectivities are not constant but rather complicated functions
of illumination angle, exponential factor, and the diffuse and specular reflectances. In all cases, however, Ry +R; < 1,
so energy is conserved. The parameters of the Phong model that dictate the directional (local horizontal or vertical)
distribution of the specular terms are n, and n,. The specular bidirectional reflectance for the AS model is given by

_F (ny+1)(n,+1)
* 8cwmax [NTL,NV]

(cos (o)) (20)

where ¥ = n, cos? (B) 4 n,sin (B).
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The apparent magnitude of an SO is the result of sunlight reflecting off of its surfaces along the line-of-sight to an
observer. First, the fraction of visible sunlight that strikes an object (and is not absorbed) is computed by

Fsun(i) = Csun,vis (llfl(l) : uéun) 2D

where Cyyn.vis = 1062 W /m? is the power per square meter impinging on a given object due to visible light striking the
surface. If either the angle between the surface normal and the observer’s direction or the angle between the surface
normal and Sun direction is greater than 7r/2 then there is no light reflected toward the observer. If this is the case then
the fraction of visible light is set to Fyn(i) = 0. Next, the fraction of sunlight that strikes an object that is reflected
must be computed:

Fsun@)ptotal(i)%(i) (ufz(l) ) ugbs)

Fops (i) = (22)
> ][>
The reflected light of each facet is now used to compute the total photon flux, which is measured by an observer:
~ N
F =Y Fasli)| +veop (23)
i=1

where vepp is the measurement noise associated with flux measured by a Charge Coupled Device (CCD) sensor. The
total photon flux is then used to compute the apparent brightness magnitude

Mypp = —26.7 —2.5log, 24)

sun,vis
where —26.7 is the apparent magnitude of the Sun.

A number of parameterizations exist to specify attitude, including Euler angles, quaternions, and Rodrigues parameters.[26]
This paper uses the quaternion, which is based on the Euler angle/axis parameterization. The quaternion is defined

as q = [pT q4]7 with p = ésin(v/2), and g4 = cos(v/2), where & and v are the Euler axis of rotation and rotation
angle, respectively. Clearly, the quaternion must satisfy a unit norm constraint, ' q = 1. In terms of the quaternion,

the attitude matrix is given by

A(q) =E"(q)¥(q) (25)
where
E(q) = ["4]“_3}[” X]} (26a)
wia) = |0 0] (26b)
with
0 —&3 82
gx]=|g 0 —g (27)
g & 0

for any general 3 x 1 vector g defined such that [gx|b =g xb.

The rotational dynamics are given by the coupled first order differential equations:

. 1
a7 = 5E(a7) oy, (28a)
f); = Jgd (T +T8 - [mg P x} Jso®? /,) (28b)
where a)g 1 is the angular velocity of the SO with respect to the inertial frame, expressed in body coordinates, Jsg is

the inertia matrix of the SO. The vectors Tflp and T are the net torques acting on the SO due to SRP expressed in body
coordinates and the control torque, respectively.
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3.3 Training Set generation: Simulating Labeled Light Curves

For the simulated case, the labeled training data samples are generated using the light curve model discussed above.
The parameters required to define the AS light curve model are sampled. Here, we considered four shapes all belonging
to the rocket body classes with different characteristics. As shown in Figure 2,the four classes are modelled as 1) A
cylinder with round top, 2) a simple cylinder, 3) a shape representative of an Atlas Upper Stage; and 4) a shape
representative of a Falcon 9 Upper Stage. Note that there is a substantial difference is nozzle size between the Atlas
and the Falcon 9 upper stages. Importantly, rocket body models are generated using octant triangulation of a sphere
discussed in Ref. [27] which divided the surface of a sphere into N facet normal. Then rocket body models are
generated by connecting two hemisphere ends of radius r with cylinder of height /. This model is not exact for all
rocket bodies but is close enough to approximate the types of light curves seen for rocket bodies.

diag | = (32 4 12), (372 + 12) r
— I — I -
g2 12 )

chl
Viot

Jrocket = Mso {

‘tOP ; 1 2 2 1 2 2 r
+ d +1 +1
» 1ag L (3r ), 1 (3r ),

Vip (1 31\ Vey (I 3r ;
a2 - Thon —
+<vmt (2+8)+vm 275 ) ) (e

Viop 5. [83 83 2
n P 22 20z
+2q rdiag s 00s

(29)

Where e = [0,0,1]” and the volume of the top hemisphere is given by Viop = 2/ 3773 and it is assumed the bottom
volume is Vit = Viop. The volume of the cylinder is given by Viy = 7tr21 and the total volume is Vi = Viop + Voot + Veyt.-

The model has been employed to generate a set of light curves associated to each of the four considered classes. The
simulation conditions are reported as follows:

e Geographic position of the ground site is 0° North, 172° West with 0 km altitude

e The orbital elements are given by a = 25864.16932 km, e¢ = 0.743, i = 30.0083 deg, @ = Q = 0.0 deg and
My =91.065 deg

e The initial time of the simulation is May 8, 2020 at 5:27.55 UTC

For all simulation scenarios,initial attitude has been represented by a set of quaternions sampled out of an uniform
distribution. Additionally, the components of the angular velocity vector have been sampled out of a uniform distribu-
tion with magnitude 0.0014rad /sec. Measurements of apparent magnitude are produced using zero-mean white-noise
error processes with a standard deviation of 0.05 for magnitude. The initial errors for the states are 50 deg for all three
attitudes, 1,000 deg/hr for the rotational rate. The time interval between the measurements is set to 5 seconds and data
are simulated for 1 hour. Figure 3 shows the simulated magnitude measurements for the four rocket body classes.

4. RESULTS

4.1 CNN Design, Training and Classification for Shape Determination

As previously discussed, the training data set consists of pairs of simulated light curve measurement vectors and class
vectors. Here, The input light curve and output class vector are denoted by x € R!*™ and y € R'*" respectively,
where m and n. denote the number of light curve measurements and number of classes, respectively. Here,a CNN is
trained to map the measurement vector, X, to classes, y, using a set of training examples. The CNN designed to learn
the functional relationship between simulated measurements and SO classes (shapes) consists of 1-D convolutional
layers with rectified linear unit (ReLU) activation, dropout, max-pooling, and two fully connected layer with ReLU
activation (Figure 4). The output layer uses softmax function to map to classification states. Each convolutional layer
has the following form:

hCOV(X) — f(x * WCOV + bCOV) (30)
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Fig. 2: Representative Shape Models for Rocket Bodies

Where * denotes the convolution operator, W denotes the convolution kernel, and f is the activation function for each
layer that adds nonlinearity to the feature vector. This work uses ReLU for convolutional layer activation. The ReLU
function is given by f(x) = max (0,x), where it is zero for negative input values and linear for positive input values.
The convolution of x with W< defines the output feature map h“”’(x). The number of output maps is determined by
the number of convolution filters for each convolutional layer. Each convolution layer has a collection of kernels of
given size that are learned directly from the data. For the light curve problem the convolutions are of one dimensional
time-series data. Then for input vectors having size (1,s,) the output vector is given by (1,s,) and the output vector
size can then be calculated from the size of the kernel, s;, and is given by s, = s, — s; + 1. After the convolution is
applied the output vector is reduced in size but zero padding is used in this work to keep the size of the feature vectors
constant through each convolutional layers.

Then a CNN applies a series of these kernels W in a layered fashion where each layer has a different size kernel that
learns features on a given scale. To simplify the information in the output of each convolutional layer, max-pooling is
used. In this work max-pooling with 1 x 4 kernel between each convolution layer is used. The max-pooling operation
convolves the 1 x 4 kernel over the output of each convolutional layer returning the max of the outputs over the 1 x 4
region. Finally, at the final layer a nonlinear function is applied to the output using a traditional neural network. This
final layer uses a fully connected neural network layer and is given by

h/*(x) = f (W/x +b/¢) (31)

After the fully connected layer a softmax function is used to provide outputs in the ranges (0, 1) that add up to 1. The
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The convolutional kernel and fully connected output layer parameters are cased into the vector 8. The cost function
used for this work is the cross-entropy loss. This loss function minimizes the cross-entropy loss between training
outputs and the CNN outputs, and is given by:

. (33)
=~y L [ylogy+ (1 —y)log(1 -)]
i=1

where § are the training examples and y are the outputs from the CNN. Then the CNN classification approach is
trained by stochastic gradient descent by minimizing the cross-entropy loss from the outputs compared to the labelled
data. Figure 4 shows the full architecture of the network used for this work. LeCun [24] showed that stochastic online
learning is superior against the full batch mode as it is faster and results in more accurate solutions. The weights for
the output layer and the convolutional layer are updated using the following relationship

0+ 1)=0() +n 0% G4)

where ¢ denotes the iteration step and 7 is the learning rate. The 3—5 is the gradient of the loss with respect to the
overall network parameters. This update is calculated for small batches over the entire training sets. Using the small
batches allows for small updates to the gradient while reducing the noise in the gradient of individual training samples.
This method of updating the parameters is referred to as stochastic gradient descent and the gradient is calculated with
error back propagation.

The training set is generated according to the simulation conditions reported in section 3.3 and comprises 200,000
light curves associated with four (4) possible classes for the four rocket body shapes (i.e. cylinder with round top,
simple cylinder, Atlas and Falcon 9 upper stages). Here, we split the training set according to the usual 80/20 rule and
use 160,000 light curves to train the CNN. The remaining 40,000 curves are employed to validate the CNN during
training to avoid overfitting.

The Keras (Python) library wit Tensorflow[28] as backend are employed to design and train the network. The pro-
posed CNN architecture is shown in 4. The CNN comprises a seven (7) layer structure, including input layer, three
convolutional layers, two fully connected layers and one softmax layer. The input layers manages a light curve input
vector comprising 182 data points. The convolutional layers have 64, 32 and 64 filters, respectively. Both max-pooling
(1x2 pooling kernel) and dropout are applied after each convolutional layer.Dropout regularization rates are set to be
0.2 for the convolutional layers and 0.5 for fully connected layers. Training occurred for 500 epochs using stochastic
gradient descent and mini-batch of 256 samples. Importantly, the ID-CNN has been trained using a single GPU with
1500 processors. Figure 6 shows the results of the training process and the overall performances. Figure 5(a) shows
the behavior of the cross-entropy loss as function of the epoch. Figure 5(b) shows the model accuracy as function of
the epoch. Both test and training sets have a similar accuracy result. We report that the CNN exhibits an accuracy of
92% on the test set. Training time is reported to be 11,000 sec. Figure 7 reports the confusion matrix associated with
the test set comprising 40,000 samples on which the CNN is not trained and where the CNN predictions are compared
with the targeted samples. Importantly, the highest error occurs on mislabeling between class 1 (Cylinder with round
top) and class 4 (Falcon 9 upper stage). Here, the CNN interprets the Falcon 9 upper stage as cylinder 797 case where
the target is class 4, with about 2% contribution to the global CNN error.

4.1.1 VAE for Shape Determination: Unsupervised Learning

Understanding the training data structure may provide insight into the ability of the deep network to effectively learn
the relationship between light curves and shape thus providing an effective solution to the inverse problem. There-
fore, understanding the distribution of the data generated via a physically-based forward model may help evaluate the
effectiveness of the CNN. Pattern in data can be potentially discovered with visualization aids. However, the visu-
alization of high dimensional data sets is generally a difficult problem. Indeed, the measured light curves employed
in the training set are represented as one-dimensional vectors comprising 721 components. A conventional approach
to data reduction and visualization considers processing the data using PCA, where the most significant two or three
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Fig. 6: CNN Classifications Results

components can be visualized in two-dimensional and three dimensional spaces. However, as a linear technique,
PCA captures only the linear structures in the data and generally linearly maps high dimensional spaces into low di-
mensional subspaces. To avoid this pitfall, especially for unknown, arbitrarily complex representations of non-linear
relationships, we train VAEs on the data to learn their intrisic latent distribution. VAEs are shown to capture the latent
distribution via the non-linear representation power of neural networks. The VAE architecture employed in this study
is reported in figure 8. Here, we considered a single-layer VAE for both decoder and encoder. As explained earlier,
the decoder represents the generative model where the data distribution is represented by the probability distribution
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Po(z|x). Conversely, the encoded distribution is represented by the inference network gy (z|x). The unsupervised data
analysis and cluster visualization is performed by plotting directly the inferred mean and logarithm of the variance in a
two dimensional space. Indeed, the encoder is comprised of a network that given the input data, predicts the mean and
the log of the variance. The network has a common hidden layer comprising of 400 neurons with sigmoid activation
functions and two output layers each of additional 200 neurons for prediction of the two distribution parameters. The
VAE has been trained using a training set comprising 40,000 light curves 32,000 of which are employed for proper
training and 8,000 for network validation. The training occurred for 1,000 epochs using a batch size of 128 elements.
Total time for training is reported to be 2,000 seconds. As explained above, the VAE learns the latent distribution of
the data. By plotting the key parameters of the distribution, i.e. mean and the log of the variance, on a two dimensional
plot, structure of the data may emerges. Figure 9 shows the results of the VAE learned parameters for the light curves
comprising the training set. Each light curve vector of 721 elements is collapsed into one individual point and colored
according the rocket body type class. Points tend to group in four (4) clusters representative of the found rocket body
classes comprising the training set. Discrimination between classes is possible as complex decision boundaries can be
learned by a highly non-linear classifier such as the CNN.

Next, we contrast the VAE approach based on deep learning, with the t-SNE algorithm. Recently, new probabilis-
tic approaches that preserve the local distance between data while mapping the high-dimensional data into a low-
dimensional subspace. One of the most popular approach to such non-linear data dimensionality reduction is the
t-Distributed Stochastic Neighbor Embedding (t-SNE, [21]). Similarly to the VAE case, we considered 2-D visualiza-
tion of the samples light curves employed in the training of the deep networks and we processed the 8,000 samples
(i.e. 2,000 per class) via the t-SNE algorithm for four selected distances, i.e. mahalanobis, cosine, chebyshev and
euclidean. The resulting 2-D embedding is visualized in figures 10(a),10(b),10(c),10(d). Structure of the data and
clustering is readily apparent in all cases but the one employing the Mahalanobis distance. All classes seem to be
fairly separated in the 2-D embedding which reflects the clustering the 721-dimensional space of the original light
curves.
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5. CONCLUSION

In this paper, we explored the feasibility of using a data-driven approach to the solution of the SO light curve inverse
problem for SO shape retrieval. Physically-based light curve inversion relies on a first-principles computational model
(forward model) to determine the light curve response as function of SO parameters/configuration (e.g. shape). How-
ever, the inverse problem is ill-posed and inversion is generally hard. Here, CNNs have been designed and trained
to directly learn the inverse functional relationship between measured light curves and shape. More specifically, we
considered as set of four classes belonging to the family of rocket bodies and generated a large data set comprising
light curves for different SO attitude motion while maintaining a pre-specified orbit. Training and validation show that
the CNN is capable of detecting the correct orbit with an accuracy of 92.2% over a validation set comprising 40,000
samples. Importantly, VAE have been trained in an unsupervised fashion to understand the latent data distribution.
Plotting the mean and variance of the training set over a two-dimensional space show the clustering pattern of the data.
Importantly, a visual inspection of the cluster structure shows that the decision boundaries between classes are highly
complex and interwoven. The results are confirmed by non-linear dimensionality reduction techniques, such as t-SNE,
which are capable of projecting high-dimensional data in 2D embedding while presenvind the distance between the
samples. As a result, deep networks are demonstrated to be able to solve the inverse problem with good accuracy due
to their capability to represent complex non-linear functional relationships.
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